Consistent Kernel Density Estimation with Non-Vanishing Bandwidth

نویسندگان

  • Efrén Cruz Cortés
  • Clayton Scott
چکیده

Consistency of the kernel density estimator requires that the kernel bandwidth tends to zero as the sample size grows. In this paper we investigate the question of whether consistency is possible when the bandwidth is fixed, if we consider a more general class of weighted KDEs. To answer this question in the affirmative, we introduce the fixed-bandwidth KDE (fbKDE), obtained by solving a quadratic program, and prove that it consistently estimates any continuous square-integrable density. We also establish rates of convergence for the fbKDE with radial kernels and the box kernel under appropriate smoothness assumptions. Furthermore, in an experimental study we demonstrate that the fbKDE compares favorably to the standard KDE and the previously proposed variable bandwidth KDE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

متن کامل

Kernel bandwidth estimation for non-parametric density estimation: a comparative study

We investigate the performance of conventional bandwidth estimators for non-parametric kernel density estimation on a number of representative pattern-recognition tasks, to gain a better understanding of the behaviour of these estimators in high-dimensional spaces. We show that there are several regularities in the relative performance of conventional kernel bandwidth estimators across differen...

متن کامل

Uniform-in-bandwidth kernel estimation for censored data

We present a sharp uniform-in-bandwidth functional limit law for the increments of the Kaplan-Meier empirical process based upon right-censored random data. We apply this result to obtain limit laws for nonparametric kernel estimators of local functionals of lifetime densities, which are uniform with respect to the choices of bandwidth and kernel. These are established in the framework of conve...

متن کامل

Fourier Series Based Bandwidth Selectors for Kernel Density Estimation

A class of Fourier series based plug-in bandwidth selectors for kernel density estimation is considered in this paper. The proposed data-dependent bandwidths are simple to obtain, easy to interpret and consistent for a wide class of compact supported distributions. Some of them present good finite sample comparative performances against the classical two-stage direct plug-in method or the least...

متن کامل

A Two-Stage Plug-In Bandwidth Selection and Its Implementation in Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation

The performance of a kernel HAC estimator depends on the accuracy of the estimation of the normalized curvature, an unknown quantity in the optimal bandwidth represented as the spectral density and its derivative. This paper proposes to estimate it with a general class of kernels. The AMSE of the kernel estimator and the AMSE-optimal bandwidth are derived. It is shown that the optimal bandwidth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.08921  شماره 

صفحات  -

تاریخ انتشار 2017